
International Journal of Music Science, Technology and Art
(IJMSTA) 1(1): 15-23, Music Academy “Studio Musica”, 2019 ISSN: 2612-2146 (Online)

 15

International Journal of Music Science,
Technology and Music Art

01 2019 - 06 2019 | Volume 1 | Issue 1
Accademia Musicale Studio Musica

 Via Andrea Gritti, 25 - 31100 Treviso (Italy)

i-Berlioz: Towards Interactive Computer-Aided
Orchestration with Temporal Control
E.R. Miranda1,*, A. Antoine1, J-M. Celerier2 and M. Desainte-Catherine2

1 Interdisciplinary Centre for Computer Music Research (ICCMR), Plymouth University, UK
2 Laboratoire Bordelais de Recherche en Informatique (LaBRI), University of Bordeaux, France
* Corresponding author: eduardo.miranda@plymouth.ac.uk

 Abstract

This paper introduces i-Berlioz, a proof-of-concept interactive Computer-Aided Orchestration (CAO) system that suggests
combinations of musical instruments to produce timbres specified by the user by means of verbal descriptors. The system
relies on machine learning for timbre classification and generative orchestration, and tools to write and execute interactive
scenarios. The paper details the two main parts of i-Berlioz: its generative and exploratory engines, respectively,
accompanied with examples. The authors discuss how i-Berlioz can aid the composition of musical form based on timbre.

Keywords: Computer-Aided Orchestration, Interaction, Generative Orchestration, Machine Learning.

Received on 27.06.2018, accepted on 01.09.2018, published on 07.01.2019

Copyright © 2019 Author et al., licensed to IJMSTA. This is an open access article distributed under the terms of the Creative
Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use, distribution and
reproduction in any medium so long as the original work is properly cited.

 doi: https://doi.org/10.48293/IJMSTA-45
 10.4108/_______________

1. Introduction

Computers have been programmed to make music as early as
the beginning of the 1950’s when the CSIR Mk1 computer
was programmed in Australia to play back popular musical
melodies [1]. The piece Illiac Suite for String Quartet,
composed in late 1950’s by Lejaren Hiller, in collaboration
with mathematician Leonard Isaacson, at the University of
Illinois, USA, is often cited as a pioneering piece of
algorithmic computer music; that is, a piece involving
materials composed by a computer. Its fourth movement, for
instance, was generated with a probabilistic Markov chain
[2]. A few years later, Hiller collaborated with Robert Baker
to develop a piece of software for composition named MUsic
Simulator Interpreter for COmpositional Procedures, or
MUSICOMP [3]. MUSICOMP probably is the first system
ever developed for computer-aided composition: “… it is a
facilitator program. It presents no specific compositional
logic itself, but it is capable of being used with nearly any
logic supplied by the user.” [4, p.1].

The burgeoning field of computer-aided composition has
advanced considerably since MUSICOMP [5]–[10]. The
computer has become ubiquitous in many aspects of musical

composition. Nowadays musicians have access to a variety of
software tools for composition, from user-friendly
programming languages [11]–[13] and AI-based generators
of musical ideas [14]–[16], to systems for generating and
managing musical events interactively in real-time [17], [18].

Whereas the great majority of computer-aided
composition systems currently available provide valuable
tools for processing music in terms of pitches, rhythms,
tempo and loudness, there is a generalized lack of tools for
processing orchestration: that is, computer-aided processing
of multi-instrumental properties and creation of unique
timbres using acoustic instruments. Historically, this
deficiency most probably is a legacy of the highly popular
MIDI (Musical Instrument Digital Interface) communication
protocol [19]. Originally developed in the 1980s to connect
digital synthesizers (e.g., to control various synthesisers with
one single keyboard controller), MIDI was quickly adopted
by the computer music research community. Rather than
representing musical sounds directly, MIDI encodes musical
notes in terms of their pitches, durations, loudness, and labels
indicating which instruments of the MIDI sound-producing
device should play them. Although the musical possibilities
of MIDI pro-cessing are vast, MIDI does not encode sounds
per se, which renders it unsuitable for processing timbre.

E.R. Miranda, A. Antoine, J-M. Celerier and M. Desainte-Catherine

 16

We are interested in developing technology for computer-
aided orchestration, or CAO. Despite the existence of a
significant and diverse body of research into timbre and its
defining acoustic features [20]–[25], there has been relatively
less research into orchestral timbre emerging from the
combination of various musical instruments playing
simultaneously [26], [27]. Our research is aimed at furthering
our understanding of orchestral timbre and building systems
for CAO informed by such understanding. This paper focuses
on the latter: it introduces i-Berlioz, a proof-of-concept CAO
system that generates orchestrations from verbal timbre
descriptors.

Before we proceed, we would like to clarify what is meant
by the term ‘orchestration’ in the context of this research.
Orchestration here is a combination of musical notes
produced simultaneously by different instruments; playing
techniques are also considered (e.g., pizzicato or bowed, for
string instruments). It is necessary to bear in mind, however,
that the art of musical orchestration is much more
sophisticated than merely combining notes. It also involves
extended playing techniques, dynamics, harmonic context,
instrumental idiomaticity, and so on. Also note that those
resulting combinations of musical notes are referred to as
‘chords’ or ‘clusters’.

Currently, i-Berlioz is capable of processing five timbre
descriptors: breathiness, brightness, dullness, roughness and
warmth. Given a timbre descriptor, the system generates
chords of musical notes with the instruments that would
produce the required timbre, plus indications of how the notes
should be played (e.g., usage of a specific bowing style for a
string instrument). Moreover, i-Berlioz is able to generate
sequences of such clusters for transitions between one timbral
quality to another; for example, from very bright to less
bright, or from dull to warm. The user can listen to the
orchestrations and see their respective music notation. The
resulting notation can be saved into a file, which can be edited
by most music notation software.

One important characteristic of i-Berlioz is its ability to
support interactive design of musical form based on timbre.
The system is able to hold multiple solutions for specific
timbral targets on a time line. And it includes a conditional
branching mechanism, which enables composers to specify
different branching options and explore them interactively.
The system supports the specification of orchestration
strategies in a hierarchical fashion and the execution of
various solutions can be inspected on the fly, while
maintaining a global consistency.

i-Berlioz combines the work on analysis and classification
of timbre within orchestral audio and machine learning
developed at Plymouth University’s ICCMR [28]–[30] and
the research into methods and tools to write and execute
interactive scenarios developed at University of Bordeaux’s
LaBRI, conducted under the OSSIA (Open Scenario System
for Interactive Applications) project [17], [31].

By way of related work, we cite the system Orchids,
developed at IRCAM, Paris [32]. Orchids is aimed at
producing orchestrations to imitate a given target sound; e.g.,
given the sound of a thunder the system would produce
suggestions for imitating the timbre of a thunder with the

orchestra. The system maintains a database of instrumental
sounds. It extracts spectral information from the target sound
and from each instrument of its database. This information is
feed into a combinatorial search algorithm, which searches
for groups of instruments whose combined spectrum matches
that of the target sound [33]. Orchids outputs dozens of
solutions that satisfy the matching criteria, but these solutions
can still sound very different from each other. This requires
the user to listen to dozens of solutions in order to select one.
This pro-cess can be very tedious, ineffective and time-
consuming, in particular when the user has a particular sound
colour, or a perceptual sound quality, in mind. We believe this
pitfall can be addressed by designing a constraint-based
filtering mechanism to narrow the solutions to a more specific
sound quality. i-Berlioz’ use of verbal sound description is
one approach to achieve this.

The remainder of this paper is structured as follows. The
next section presents an overview of the system’s architecture
and briefly describes how orchestrations are produced from a
given sound descriptor. In order to ascertain that the system
outputs an orchestration that satisfies a required characteristic
it needs a method for categorizing trials, which will be
detailed next. Then, we present the system’s ability to
generate sequences and transitions between timbral qualities.

2. System’s Overview

The system comprises two main modules referred to as
generative and exploratory engines, respectively. The
functioning of the generative module is depicted in the
flowchart shown in Figure 1.

The system holds a comprehensive Instrument Database,
which contains audio samples of single notes played by
orchestral instruments. There are various versions for each
note, with different playing techniques and dynamics. Given
a Timbre Description, the system generates candidate
solutions by assembling combination of notes from the
database. With the Timbre Description the user can also
provide additional information to constraint the
combinatorial search space, such as a list of required
instruments and number of notes. An example of a description
could be: {bright, string, 4}, which means, a bright timbre
using up to 4 string instruments.

The Generate Candidate Solution module generates an
audio file, which is rendered using the samples contained in
the database. In order to estimate the perceptual quality of the
candidate solution, the Timbre Estimation Function module
analyses the spectrum of candidate audio file and the results
of the analysis are relayed to the Timbre Classification
Model, which establishes whether the candidate audio has the
required timbre characteristics or not. This process is repeated
until a candidate solution matches the requirement.

The exploratory engine is depicted in Figure 2. It is based
on an extension plug-in to the i-score software that integrates
the generative engine with the interaction scoring capabilities
of i-score, which is detailed in section 4. The general usage
process is as follows: first, the user creates a score in which
generative processes can be positioned in time. Such a score

i-Berlioz: Interactive Computer-Aided Orchestration with Temporal Control

17

can contain branches which are specified graphically; these
branches allows behaviours such as: “after the execution of a
bright-to-warm transition, perform a warm-to-rough
transition in one case and a warm-to-dull transition in
another”. Then, during playback, cases can be selected
according to external controls in real-time. Such controls can
come from OSC or MIDI commands.

Figure 1. Flowchart of the generative engine.

The chords produced by the generative engine are passed
through the audio output ports of the process for direct
listening. Besides, each i-Berlioz process provides the list of
chords it played during the play-back in a graphical view, so
that they can be leveraged by the composer.

3. Timbre Descriptors and Classification
Model

The system supports five descriptors of timbre, namely:
breathiness, brightness, dull-ness, roughness and warmth.
These descriptors can be retrieved from audio sources by
performing various analyses methods, which are detailed
below:

• Breathiness: in order to measure the level of breathiness
of an audio file, we calculate the amplitude of the
fundamental frequency against the noise con-tent, and
also the spectral slope [34], [35]. The larger the ratio
between the amplitude of the fundamental and the noise
content, the breathier the sound.

• Brightness: the acoustic correlates for the attribute
brightness are the spectral centroid and the fundamental
frequency [36], [37]. The higher the spectral centroid and
the fundamental frequency, the brighter the sound.

• Dullness: as with brightness, in order to measure the
dullness of a sound we need to calculate its spectral
centroid. However, in this case, the lower the value of the
spectral centroid the duller is the respective sound [38].

• Roughness: is measured by calculating the distance
between adjacent partials in critical bandwidths and the
energy above the 6th harmonic. A rough sound is
characterized be a short distance between critical
bandwidths; theoretically, the shorter the distance the
rougher the sound [39]–[41].

• Warmth: the warmth of a sound is measured by
calculating its spectral centroid and retrieving the energy
of its first three harmonics. A low spectral centroid and a
high energy in the first three harmonics suggest that the
sound is warm [42].

Figure 2. Flowchart of the exploratory engine.

In order to establish whether a solution candidate
possesses the required characteristics or not we developed a
method to automatically classify audio samples according to
timbre description as described above. The difficulty here is
that there is no agreed metrics for classifying orchestral audio
samples in terms of timbre properties. Therefore, we
developed a bespoke comparative scale for each descriptor as
follows: 250 audio recordings of various different well-
known orchestral pieces have been analysed; e.g.,
Beethoven’s 5th Symphony, Vivaldi’s Four Seasons,
Debussy’s Suite Bergamasque, and Saint-Saëns’ Carnival of

E.R. Miranda, A. Antoine, J-M. Celerier and M. Desainte-Catherine

 18

the Animals, to cite but four. Each of these pieces was sliced
five times into audio samples lasting for 1, 2, 3, 4, and 5
seconds, respectively. Here, the analysis of longer audio
samples would not provide accurate values as some acoustic
features are time related. Therefore, it is essential to split them
into short audio samples for analysis purposes. The different
lengths have been chosen arbitrarily; these will have to be
revisited as this research progresses. The data gathering
resulted in performing timbre estimations onto 236,632 audio
files, thus, compiling a dataset composed of 236,632 values
for each descriptor. The analysis of this large number of
samples enabled us to establish a scale for each attribute, and,
thus, be able to normalise the data among the five timbre
descriptors. Furthermore, the scale for each timbre attribute is
continually calibrated as new audio files are analysed.

The development of a comparative scale for the different
descriptors enabled us to input timbre values into a machine-
learning algorithm, using a Support Vector Machine (SVM)
supervised learning model [43]. SVM methods have been
successfully applied in various applications, such as face
detection [44] and speaker recognition [45] to name but two.
SVM models try to find the separation between the different
categories with a gap that is as wide as possible to create a
delimited space for each category. Then, when a new value is
presented, SVM models estimate the space in which the value
sits, thus predicting the category it belongs to.

Supervised learning algorithms are dependent of a labelled
training dataset. Therefore, the initial step was to create a set
of examples that will then be used to train the SVM
classification model. Here, examples consisted of calculated
timbral values of short audio files as input data, and their
dominant perceptual quality, represented by verbal attributes,
as the desired output category. The training samples have
been selected from the large training dataset created for the
comparative scale mentioned previously. In this case, the 250
orchestral audio files that have scored the highest values for
each verbal attribute have been selected and manually
labelled by the authors with their corresponding attribute. For
instance, the 250 samples with the highest values for the at-
tribute brightness have been chosen and labelled ‘brightness’.
In total, the corpus training contained 1,250 samples labelled
accordingly.

The SVM algorithm has been implemented using the
svm.SVC function, which is a SVM method for classification
task, taken from the Scikit-Learn v0.18 library [46], with
parameters kernel type = RBF (for Radial Basis Function),
RBF kernel coefficient γ = 0.2, and penalty parameter C=1.0.
Figure 3 shows a normalized confusion matrix created to
estimate the performance of the classification model
generated by the SVM algorithm. Here, the training samples
consisted of 90% of the training corpus (1,125 samples), and
10% of the training corpus (125 samples) were selected as
testing samples. Using this training dataset, the svm.SVC
function produced a success rate of 0.976, which means that
the classification model predicted the correct verbal attribute
97.6% of the time. Users have the ability to calibrate the
classification models by listening and labelling a selection of
audio samples, which are then processed by the SVM
algorithm. This method, inspired by the reinforcement

learning techniques, allows users to input their own
perception levels into the learning process, thus improving
the accuracy of the suggested classifications.

Figure 3. Normalised confusion matrix of the SVM

classification model created from rescaled training dataset,
with test size = 10% (1,125 training samples, 125 testing

samples).

3.1. Solution Candidate Examples

This section illustrates the definition and generation of a
solution candidate. As mentioned previously, i-Berlioz
utilizes timbre descriptors as output decision parameter in the
generative engine. Other parameters can be manipulated by
the user to define their musical ideas and guide the generative
processes. As additional constraints, the user can specify the
group of instruments and the types of interval allowed
between the sets of notes of a candidate solution; for instance,
a type of chord such as major, minor, whole tones, semi-tone
clusters, and so on. These parameters could also be randomly
assigned should the user wish so.

For ease of description and discussion, the following
examples are constrained to string instruments only:
contrabass, violoncello, viola and violin. For the first
example, the system was instructed to generate a solution
with a bright timbre produced by three different string
instruments. The input to the system looks like this: {bright,
string, 3}. Figure 4 shows the spectrogram of a candidate
solution generated by i-Berlioz. It produced a chord with the
following 3 notes: {A#3, bass, note-lasting}, {D, viola,
pizzicato-secco} and {F6, violin, note-lasting}. The first
parameter inside brackets is the name of the note, the second
is the name of the instrument to produce the note and the third
is the playing technique.

In the spectrogram of the audio file generated for this
solution candidate we can note that this audio file contains
considerable energy (intensity) at its high frequencies, a

i-Berlioz: Interactive Computer-Aided Orchestration with Temporal Control

19

feature of the ‘brightness’ quality. Figure 5 presents a
spectrogram of a second example, generated from the
following request: {warm, string, 3}. In this case, the system
produced the following solution candidate: {D#2, bass,

staccato}, {B2, cello, pizzicato-secco} and {F#4, violin,
pizzicato-secco}. The spectrogram of this solution (Figure 5)
shows that energy is more prominent at the lower frequencies
of the spectrum; i.e., below 2,500 Hz.

Figure 4. Spectrogram of the audio file generated for a candidate solution matching the descriptor ‘brightness’.

Figure 5. Spectrogram of the audio file generated for a candidate solution matching the descriptor ‘warmth’.

4. Sequencing and Transitions At the basis of the scheme for making transitions introduced
above is a sophisticated engine for writing and executing
temporal constraints, based on a formalism for the authoring

E.R. Miranda, A. Antoine, J-M. Celerier and M. Desainte-Catherine

 20

of interactive scores developed during the course of the
OSSIA research project at LaBRI [17]. This formalism
manifests itself mainly in the i-score software, which is both
a visual editor and an execution engine for such interactive
scores.

The system is based on the following building blocks:
temporal interval, temporal condition, instantaneous
condition, and process. Temporal intervals are organized in
directed acyclic graphs, with instantaneous conditions being
the vertices of such graphs, and the direction of time being
the direction of the graph. Temporal conditions allow to
trigger groups of instantaneous conditions, which in turn
stops and starts previous and following intervals. During the
execution of an interval, processes can take place: these can
be automations, sound files and effects, scripts, and so on.

The elements of the OSSIA model is shown in Figure 6.
The execution takes place as follows: the interval A runs for
a fixed duration. When it ends, an instantaneous condition is
evaluated: if it is false, the branch with B will not run.
Otherwise, after some time and the playback of an audio file,
the execution of B ends up in a flexible area centred on a
temporal condition. If there is an interaction, B stops and D
starts. Else, D starts when the maximum bound of B is
reached. Like after A, a condition chooses whether G will
execute. If G executes, an automation and another
computation are both executed for a fixed duration.
Meanwhile, C started executing at the same time than B. C is
waiting for an interaction, without any time-out. When the
interaction happens, the two conditions following C are
evaluated; the truth value of each will imply the execution of
E and F. Finally, when H executes, a hierarchical sub-score
starts.

The compositional process proposed in this paper only
requires the use of instantaneous conditions in order to choose
a specific sequence amongst the possible ones, and of the i-
Berlioz process. This process leverages the generation engine
to create and listen to chords according to a specific
transition. The following parameters can be specified by the
composer:

• The start and end target descriptors
• The duration of each orchestration cluster, or

chord
• The number of instruments
• The set of instruments available for

generating an orchestration cluster

When the process runs, at regular intervals fixed by the
requested chord length, the generation engine receives a
chord query. When a correct chord has been generated, its
sound file is reported to the i-Berlioz process which plays it.

In order to perform a cross-fade between the start and end
descriptors, the following algorithm is applied:

Figure 6. Elements of the OSSIA model.

• On the first tick, generate ten chords and use
their attribute value, for instance ‘brightness’
to find a minimal and maximal expected
value for the rest of the generation.

• Then, at every tick, generate ten other chords
and find the one with the attribute that
matches the expected progression the closest
over all chords generated, so that the first
generated chord has a maximal attribute, and
the chord generated at the middle of the
process has a minimal attribute.

• For the second half of the process, perform
the same method but going from the
minimum to the maximum instead.

4.1 An Example of Making Transitions with i-
Berlioz

This section proposes to illustrate the processes for creating
sequences of instrument combination transitions with i-
Berlioz with a detailed example. First, considering a single
run of the process shown in Figure 7, which consists of
generating a sequence of chords from ‘brightness’ to
‘dullness’. The corresponding timbral values for each chord
composing the sequence are displayed in Table 1. Here, the
sequence comprised of ten chords divided in two parts. First,
i-Berlioz generated five brass instrument chords matching the
timbral descriptor ‘brightness’, which were then concatenated
in descending order. Then, five chords matching the attribute
‘dullness’ were generated and concatenated in ascending
order. In other words, the system was required to generate a
sequence going from ‘very bright’ to a ‘little bright’, then
from a ‘little dull’ to ‘very dull’.

Next, consider the scenario example presented in Figure 8.
Here, i-Berlioz was asked to generate three sequences using
the number of instruments defined by the curve drawn in the

i-Berlioz: Interactive Computer-Aided Orchestration with Temporal Control

21

i-score automation box displayed at the top—in this example,
using two to four instruments.

Figure 7. The i-Berlioz process embedded in an i-Score object.

Table 1. Calculated timbral values for the sequence shown

in Figure 7.

Descriptor Timbral Values
Brightness 0.8129 0.7805 0.6685 0.5872 0.497
Dullness 0.6247 0.7170 0.8001 0.8159 0.875

The first sequence consisted of generating instrument
combinations from dullness to breathiness with brass
instruments. The second sequence had an instantaneous
condition (shown in the OSSIA model in Figure 6). Here,
the selection of the i-Berlioz box to generate the sequence
2 depended on a condition. In this example, we used a
MIDI to specify the MIDI values of a fader. If the fader
was up, the box named Sequence_2a was selected.
Otherwise, if the fader was down, Sequence_2b was
selected. Here, the fulfilment of the condition was
manually defined by moving a fader on a MIDI controller.
However, conditions can also be the result of different
parameters, such as temporal or number of instruments to
combine for example. Then, for the third sequence, the i-
Berlioz box Sequence_3 had a temporal condition which
meant to start the generation of this sequence after 15
seconds. This last sequence was composed of brass
instrument combinations from brightness to dullness.

5 Concluding Remarks

We are interested in developing technology for computer-
aided orchestration, or CAO. Our research is aimed at
furthering our understanding of orchestral timbre and
building systems for CAO informed by such
understanding. This paper introduced i-Berlioz, a proof-of-
concept interactive CAO system that generates
orchestrations from verbal timbre descriptors.

Currently, i-Berlioz is capable of processing only five
timbre descriptors: breathiness, brightness, dullness,
roughness and warmth. Obviously, this is only a starting
point. Our goal is to provide flexibility for user-defined
vocabularies. However, this is a challenging task because
timbre is a difficult concept to formalize, even more so
orchestral timbre, as there has been relatively less research
into orchestral timbre emerging from the combination of
various musical instruments playing simultaneously.

Still more work need to be developed with respect to the
Exploratory Engine (Figure 2). Here we introduced how we
are exploring the potential of the OSSIA time-based
formalism to aid the design of sequences and transitions of
timbral events in time, which we believe would ultimately
aid the composition of musical form based on timbre.
Interactive scores, as presented in [47], allows a composer
to write musical scores in a hierarchical fashion and
introduce interactivity by setting interaction points. This
would enable different executions of the same score to be
performed, while maintaining a global consistency by the
use of constraints on either the values of the controlled
parameters, or the time when they must occur.

Acknowledgements

This research was developed thanks to a scholarship from
the Arts and Humanities Research Council (AHRC) in the
UK, through the 3D3 Centre for Doctoral Training at the
University of Plymouth. The authors also thank the
financial support for Initiative d’excellence de l’Université
de Bordeaux (IdEx Bordeaux) in France.

E.R. Miranda, A. Antoine, J-M. Celerier and M. Desainte-Catherine

 22

Figure 8. A scenario example operation of i-Berlioz.

References
[1] DOORNBUSCH, P. (2004) Computer Sound Synthesis in

1951: The Music of CSIRAC. Computer Music Journal
28(1): 10-25.

[2] HILLER, L. and ISAACSON, L. M. (1959) Experimental
Music: Composition with an Electronic Computer, (New
York, USA: McGraw-Hill).

[3] HILLER, L. and BAKER, R. (1963) MUSICOMP: MUsic
Simulator-Interpreter for COMpositional Procedures for the
IBM 7090. Technical Report 9, University of Illinois at
Urbana-Champaign, Experimental Music Studios.

[4] BAKER, R. (1963) MUSICOMP: MUsic Simulator-
Interpreter for COMpositional Procedures for the IBM

7090. Technical Report 9, (Urbana, USA: University of
Illinois Experimental Music Studio).

[5] AGOSITINI, A. and GHISI, D. (2013) Real-Time Computer-
Aided Composition with Bach, Contemporary Music
Review 32(1): 41-48.

[6] ASSAYAG, G., RUEDA, C., LAURSON, M., AGON, C. and
DELERUE, O. (1999) Computer-Assisted Composition at
IRCAM: From PatchWork to OpenMusic, Computer Music
Journal 23(3): 59-72.

[7] BRESSON, J., AGON, C. and ASSAYAG, G. (2016) The OM
Composer’s Book 3, (Paris, France: Éditions Delatour).

[8] FERNÁNDEZ, J. D. and VICO, F. (2013) AI Methods in
Algorithmic Composition: A Comprehensive Survey,
Journal of Artificial Intelligence Research 48: 513-582.

i-Berlioz: Interactive Computer-Aided Orchestration with Temporal Control

23

[9] MIRANDA, E. R. (2011) Composing Music with Computers,
(Oxford, UK: Focal Press).

[10] ROADS, C. (1996) The Computer Music Tutorial,
(Cambridge, USA: The MIT Press).

[11] BRESSON, J., AGON, C. and ASSAYAG, G. (2011)
OpenMusic: Visual Programming Environment For Music
Composition, Analysis And Research. In Proceedings of the
19th ACM International Conference on Multimedia,
Scottsdale, Arizona, USA, 743-746.

[12] FARNELL, A. (2010) Designing Sound, (Cambridge, USA:
The MIT Press).

[13] WINKLER, C. (2001) Composing Interactive Music:
Techniques and Ideas Using Max, (Cambridge, USA: The
MIT Press).

[14] BILES, J. A. (2007) Improvizing with Genetic Algorithms:
GenJam. In MIRANDA, E. R. and BILES, J. A. [ed.],
Evolutionary Computer Music (London, UK: Springer).

[15] GIMENES, M. and MIRANDA, E. R. (2011) An Ontomemetic
Approach to Musical Intelligence. In MIRANDA, E. R. [ed.],
A-Life for Music: Music and Computer Models of Living
Systems (Middleton, USA: A-R Editions).

[16] PACHET, F. (2002) The Continuator: Musical Interaction
With Style. In Proceedings of International Computer
Music Conference (ICMC2002), Gotheborg, Sweden.

[17] CELERIER, J-M., BALTAZAR, P., BOSSUT, C., VUAILLE, N.
and COUTURIER, J-M. (2015) OSSIA: Towards A Unified
Interface For Scoring Time And Interaction. In Proceedings
of TENOR 2015 Conference, Paris, France.

[18] TORO-BERMÚDEZ, M. and DESAINTE-CATHERINE, M. (2010)
Concurrent Constraints Conditional-Branching Timed
Interactive Scores. In Proceedings of Sound and Music
Computing, Barcelona, Spain.

[19] WHITE, P. (2003) Basic MIDI, (London, UK: SMT -
Sanctuary Publishing).

[20] BARRIÈRE, J-B. (1991) Le Timbre: Métaphore pour la
Composition, (Paris, France: Christian Bourgeois).

[21] GREY, J. M. (1975) An Exploration of Musical Timbre, PhD
Thesis, (Stanford, USA: Stanford University).

[22] HELMHOLTZ, H. (1954) On the Sensations of Tone as a
Physiological Basis for the Theory of Music, (New York,
USA: Dover Publications).

[23] SCHOUTEN, J. F. (1968) The Perception of Timbre. In
Reports of the 6th International Congress on Acoustics, 76:
10.

[24] SIEDENBURG, K., FUJINAGA, I. and MCADAMS, S. (2016) A
Comparison of Approaches to Timbre Descriptors in Music
Information Retrieval and Music Psychology, Journal of
New Music Research 45(1): 27-41.

[25] ZWICKER, E. and FASTL, H. (2013) Psychoacoustics: Facts
and Models, (London, UK: Springer).

[26] ALLURI, V. and TOIVIAINEN, P. (2010) Exploring perceptual
and acoustical correlates of polyphonic timbre, Music
Perception: An Interdisciplinary Journal 27(3): 223-242.

[27] AUCOUTURIER, J-J. (2006) Ten experiments on the
modelling of polyphonic timbre, PhD Thesis, (Paris, France:
University of Paris 6).

[28] ANTOINE, A. and MIRANDA, E. R. (2017) Computer
Generated Orchestration: Towards Using Musical Timbre in
Composition. In Proceedings of the 9th European Music
Analysis Conference (EuroMAC 9 – IX CEAM), Strasbourg,
France.

[29] ANTOINE, A. and MIRANDA, E. R. (2017) Musical Acoustics,
Timbre, and Computer–Aided Orchestration Challenges. In
Proceedings of the 2017 International Symposium on
Musical Acoustics (ISMA), Montreal, Canada.

[30] ANTOINE, A., WILLIAMS, D. and MIRANDA, E. R. (2016)
Towards a Timbral Classification System for Musical
Excerpts. In Proceedings of the 2nd AES Workshop on
Intelligent Music Production, London, UK.

[31] DE LA HOGUE, T., BALTAZAR, T., DESAINTE-CATHERINE,
M., CHAO, J. and BOSSUT, C. (2014) OSSIA : Open Scenario
System for Interactive Applications. In Proceedings of
Journées de l’Informatique Musicale, Bourges, France.

[32] ESLING, P. and BOUCHEREAU, A. (2014) Orchids: Abstract
and temporal orchestration software, (Paris, USA:
IRCAM).

[33] TARDIEU, D., CARPENTIER, G. and RODET, X. (2007)
Computer-Aided Orchestration Based on Probabilistic
Instruments Models and Genetic Exploration. In
Proceedings of International Computer Music Conference
(ICMC2007), Copenhagen, Denmark.

[34] HILLENBRAND, J. and HOUDE, R. A. (1996) Acoustic
Correlates of Breathy Vocal Qualitydysphonic Voices and
Continuous Speech, Journal of Speech, Language, and
Hearing Research 39(2): 311-321.

[35] LANDERA, M. A. and SHRIVASTAV, R. (2006) Effects of
Spectral Slope on Perceived Breathiness in Vowels, The
Journal of the Acoustical Society of America 119(5): 3339-
3340.

[36] SCHUBERT, E., WOLFE, J. and TARNOPOLSKY, A. (2004)
Spectral Centroid and Timbre in Complex, Multiple
Instrumental Textures. In Proceedings of the International
Conference on Music Perception and Cognition, Evanston,
USA, 112-116.

[37] DISLEY, A. C., HOWARD, D. M. and HUNT, A. D. (2006)
Timbral Description of Musical Instruments. In
Proceedings of International Conference on Music
Perception and Cognition, Bologna, Italy, 61-68.

[38] BOLGER, D. B. (2004) Computational Models of Musical
Timbre and the Analysis of its Structure in Melody, PhD
Thesis, (Limerick, Ireland: University of Limerick).

[39] TERHARDT, E. (1974) On the Perception of Periodic Sound
Fluctuations (Roughness), Acta Acustica 304: 201-213.

[40] AURES, v. W. (1985) A Procedure for Calculating Auditory
Roughness, Acustica 58(5): 268-281.

[41] FASTL, H. and ZWICKER, E. (2007) Psychoacoustics: Facts
and Models, (London, UK: Springer).

[42] PRATT, R. and DOAK, P. (1976) A Subjective Rating Scale
for Timbre, Journal of Sound and Vibration 45(3): 317-328.

[43] CORTES, C. and VAPNIK, V. (1995) Exploring Perceptual
and Acoustical Correlates of Polyphonic Timbre, Machine
Learning 20(3): 273-297.

[44] OSUNA, E., FREUND, R. and GIROSIT, F. (1997) Training
Support Vector Machines: an Application to Face
Detection. In Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition, IEEE, 130-136.

[45] WAN, V. and CAMPBELL, W. M. (2000) Support Vector
Machines for Speaker Verification and Identification. In
Proceedings of IEEE Workshop on Neural Networks for
Signal Processing X, IEEE, 775-784.

[46] PEDREGOSA, F., VAROQUAUX, G., GRAMFORT, A., MICHEL,
V., THIRION, B., GRISEL, O., BLONDEL, M., PRETTENHOFER,
P., WEISS, R., DUBOURG, V. and VANDERPLAS, J. (2011)
Scikit-learn: Machine Learning in Python, Journal of
Machine Learning Research 12: 2825-2830.

[47] ALLOMBERT, A., ASSAYAG, G. and DESAINTE-CATHERINE,
M. (2007) A System of Interactive Scores Based on Petri
Nets. In Proceeding of the 4th Sound and Music Conference,
Lefkada, Greece, 158-165.

