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 Abstract 
 
This paper introduces i-Berlioz, a proof-of-concept interactive Computer-Aided Orchestration (CAO) system that suggests 
combinations of musical instruments to produce timbres specified by the user by means of verbal descriptors. The system 
relies on machine learning for timbre classification and generative orchestration, and tools to write and execute interactive 
scenarios. The paper details the two main parts of i-Berlioz: its generative and exploratory engines, respectively, 
accompanied with examples. The authors discuss how i-Berlioz can aid the composition of musical form based on timbre. 
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1. Introduction 

Computers have been programmed to make music as early as 
the beginning of the 1950’s when the CSIR Mk1 computer 
was programmed in Australia to play back popular musical 
melodies [1]. The piece Illiac Suite for String Quartet, 
composed in late 1950’s by Lejaren Hiller, in collaboration 
with mathematician Leonard Isaacson, at the University of 
Illinois, USA, is often cited as a pioneering piece of 
algorithmic computer music; that is, a piece involving 
materials composed by a computer. Its fourth movement, for 
instance, was generated with a probabilistic Markov chain 
[2].  A few years later, Hiller collaborated with Robert Baker 
to develop a piece of software for composition named MUsic 
Simulator Interpreter for COmpositional Procedures, or 
MUSICOMP [3]. MUSICOMP probably is the first system 
ever developed for computer-aided composition: “… it is a 
facilitator program. It presents no specific compositional 
logic itself, but it is capable of being used with nearly any 
logic supplied by the user.” [4, p.1].  

The burgeoning field of computer-aided composition has 
advanced considerably since MUSICOMP [5]–[10]. The 
computer has become ubiquitous in many aspects of musical 

composition. Nowadays musicians have access to a variety of 
software tools for composition, from user-friendly 
programming languages [11]–[13] and AI-based generators 
of musical ideas [14]–[16], to systems for generating and 
managing musical events interactively in real-time [17], [18]. 

Whereas the great majority of computer-aided 
composition systems currently available provide valuable 
tools for processing music in terms of pitches, rhythms, 
tempo and loudness, there is a generalized lack of tools for 
processing orchestration: that is, computer-aided processing 
of multi-instrumental properties and creation of unique 
timbres using acoustic instruments. Historically, this 
deficiency most probably is a legacy of the highly popular 
MIDI (Musical Instrument Digital Interface) communication 
protocol [19]. Originally developed in the 1980s to connect 
digital synthesizers (e.g., to control various synthesisers with 
one single keyboard controller), MIDI was quickly adopted 
by the computer music research community. Rather than 
representing musical sounds directly, MIDI encodes musical 
notes in terms of their pitches, durations, loudness, and labels 
indicating which instruments of the MIDI sound-producing 
device should play them. Although the musical possibilities 
of MIDI pro-cessing are vast, MIDI does not encode sounds 
per se, which renders it unsuitable for processing timbre. 
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We are interested in developing technology for computer-
aided orchestration, or CAO. Despite the existence of a 
significant and diverse body of research into timbre and its 
defining acoustic features [20]–[25], there has been relatively 
less research into orchestral timbre emerging from the 
combination of various musical instruments playing 
simultaneously [26], [27]. Our research is aimed at furthering 
our understanding of orchestral timbre and building systems 
for CAO informed by such understanding. This paper focuses 
on the latter: it introduces i-Berlioz, a proof-of-concept CAO 
system that generates orchestrations from verbal timbre 
descriptors.  

Before we proceed, we would like to clarify what is meant 
by the term ‘orchestration’ in the context of this research. 
Orchestration here is a combination of musical notes 
produced simultaneously by different instruments; playing 
techniques are also considered (e.g., pizzicato or bowed, for 
string instruments). It is necessary to bear in mind, however, 
that the art of musical orchestration is much more 
sophisticated than merely combining notes. It also involves 
extended playing techniques, dynamics, harmonic context, 
instrumental idiomaticity, and so on. Also note that those 
resulting combinations of musical notes are referred to as 
‘chords’ or ‘clusters’. 

Currently, i-Berlioz is capable of processing five timbre 
descriptors: breathiness, brightness, dullness, roughness and 
warmth.  Given a timbre descriptor, the system generates 
chords of musical notes with the instruments that would 
produce the required timbre, plus indications of how the notes 
should be played (e.g., usage of a specific bowing style for a 
string instrument). Moreover, i-Berlioz is able to generate 
sequences of such clusters for transitions between one timbral 
quality to another; for example, from very bright to less 
bright, or from dull to warm. The user can listen to the 
orchestrations and see their respective music notation. The 
resulting notation can be saved into a file, which can be edited 
by most music notation software. 

One important characteristic of i-Berlioz is its ability to 
support interactive design of musical form based on timbre. 
The system is able to hold multiple solutions for specific 
timbral targets on a time line. And it includes a conditional 
branching mechanism, which enables composers to specify 
different branching options and explore them interactively. 
The system supports the specification of orchestration 
strategies in a hierarchical fashion and the execution of 
various solutions can be inspected on the fly, while 
maintaining a global consistency. 

i-Berlioz combines the work on analysis and classification 
of timbre within orchestral audio and machine learning 
developed at Plymouth University’s ICCMR [28]–[30] and 
the research into methods and tools to write and execute 
interactive scenarios developed at University of Bordeaux’s 
LaBRI, conducted under the OSSIA (Open Scenario System 
for Interactive Applications) project [17], [31]. 

By way of related work, we cite the system Orchids, 
developed at IRCAM, Paris [32]. Orchids is aimed at 
producing orchestrations to imitate a given target sound; e.g., 
given the sound of a thunder the system would produce 
suggestions for imitating the timbre of a thunder with the 

orchestra. The system maintains a database of instrumental 
sounds. It extracts spectral information from the target sound 
and from each instrument of its database. This information is 
feed into a combinatorial search algorithm, which searches 
for groups of instruments whose combined spectrum matches 
that of the target sound [33]. Orchids outputs dozens of 
solutions that satisfy the matching criteria, but these solutions 
can still sound very different from each other. This requires 
the user to listen to dozens of solutions in order to select one. 
This pro-cess can be very tedious, ineffective and time-
consuming, in particular when the user has a particular sound 
colour, or a perceptual sound quality, in mind. We believe this 
pitfall can be addressed by designing a constraint-based 
filtering mechanism to narrow the solutions to a more specific 
sound quality. i-Berlioz’ use of verbal sound description is 
one approach to achieve this. 

The remainder of this paper is structured as follows. The 
next section presents an overview of the system’s architecture 
and briefly describes how orchestrations are produced from a 
given sound descriptor. In order to ascertain that the system 
outputs an orchestration that satisfies a required characteristic 
it needs a method for categorizing trials, which will be 
detailed next. Then, we present the system’s ability to 
generate sequences and transitions between timbral qualities. 

2. System’s Overview 

The system comprises two main modules referred to as 
generative and exploratory engines, respectively. The 
functioning of the generative module is depicted in the 
flowchart shown in Figure 1. 

The system holds a comprehensive Instrument Database, 
which contains audio samples of single notes played by 
orchestral instruments. There are various versions for each 
note, with different playing techniques and dynamics. Given 
a Timbre Description, the system generates candidate 
solutions by assembling combination of notes from the 
database. With the Timbre Description the user can also 
provide additional information to constraint the 
combinatorial search space, such as a list of required 
instruments and number of notes. An example of a description 
could be: {bright, string, 4}, which means, a bright timbre 
using up to 4 string instruments. 

The Generate Candidate Solution module generates an 
audio file, which is rendered using the samples contained in 
the database. In order to estimate the perceptual quality of the 
candidate solution, the Timbre Estimation Function module 
analyses the spectrum of candidate audio file and the results 
of the analysis are relayed to the Timbre Classification 
Model, which establishes whether the candidate audio has the 
required timbre characteristics or not. This process is repeated 
until a candidate solution matches the requirement. 

The exploratory engine is depicted in Figure 2. It is based 
on an extension plug-in to the i-score software that integrates 
the generative engine with the interaction scoring capabilities 
of i-score, which is detailed in section 4. The general usage 
process is as follows: first, the user creates a score in which 
generative processes can be positioned in time. Such a score 
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can contain branches which are specified graphically; these 
branches allows behaviours such as: “after the execution of a 
bright-to-warm transition, perform a warm-to-rough 
transition in one case and a warm-to-dull transition in 
another”. Then, during playback, cases can be selected 
according to external controls in real-time. Such controls can 
come from OSC or MIDI commands. 

 
Figure 1. Flowchart of the generative engine. 

The chords produced by the generative engine are passed 
through the audio output ports of the process for direct 
listening. Besides, each i-Berlioz process provides the list of 
chords it played during the play-back in a graphical view, so 
that they can be leveraged by the composer. 

3. Timbre Descriptors and Classification 
Model 

The system supports five descriptors of timbre, namely: 
breathiness, brightness, dull-ness, roughness and warmth. 
These descriptors can be retrieved from audio sources by 
performing various analyses methods, which are detailed 
below: 

• Breathiness: in order to measure the level of breathiness 
of an audio file, we calculate the amplitude of the 
fundamental frequency against the noise con-tent, and 
also the spectral slope [34], [35]. The larger the ratio 
between the amplitude of the fundamental and the noise 
content, the breathier the sound.  

• Brightness: the acoustic correlates for the attribute 
brightness are the spectral centroid and the fundamental 
frequency [36], [37]. The higher the spectral centroid and 
the fundamental frequency, the brighter the sound.  

• Dullness: as with brightness, in order to measure the 
dullness of a sound we need to calculate its spectral 
centroid. However, in this case, the lower the value of the 
spectral centroid the duller is the respective sound [38]. 

• Roughness: is measured by calculating the distance 
between adjacent partials in critical bandwidths and the 
energy above the 6th harmonic. A rough sound is 
characterized be a short distance between critical 
bandwidths; theoretically, the shorter the distance the 
rougher the sound [39]–[41]. 

• Warmth: the warmth of a sound is measured by 
calculating its spectral centroid and retrieving the energy 
of its first three harmonics. A low spectral centroid and a 
high energy in the first three harmonics suggest that the 
sound is warm [42]. 
 

 
 

Figure 2. Flowchart of the exploratory engine. 
 

In order to establish whether a solution candidate 
possesses the required characteristics or not we developed a 
method to automatically classify audio samples according to 
timbre description as described above. The difficulty here is 
that there is no agreed metrics for classifying orchestral audio 
samples in terms of timbre properties. Therefore, we 
developed a bespoke comparative scale for each descriptor as 
follows: 250 audio recordings of various different well-
known orchestral pieces have been analysed; e.g., 
Beethoven’s 5th Symphony, Vivaldi’s Four Seasons, 
Debussy’s Suite Bergamasque, and Saint-Saëns’ Carnival of 



 
E.R. Miranda, A. Antoine, J-M. Celerier and M. Desainte-Catherine 

  18      

the Animals, to cite but four.  Each of these pieces was sliced 
five times into audio samples lasting for 1, 2, 3, 4, and 5 
seconds, respectively. Here, the analysis of longer audio 
samples would not provide accurate values as some acoustic 
features are time related. Therefore, it is essential to split them 
into short audio samples for analysis purposes. The different 
lengths have been chosen arbitrarily; these will have to be 
revisited as this research progresses. The data gathering 
resulted in performing timbre estimations onto 236,632 audio 
files, thus, compiling a dataset composed of 236,632 values 
for each descriptor. The analysis of this large number of 
samples enabled us to establish a scale for each attribute, and, 
thus, be able to normalise the data among the five timbre 
descriptors. Furthermore, the scale for each timbre attribute is 
continually calibrated as new audio files are analysed.  

The development of a comparative scale for the different 
descriptors enabled us to input timbre values into a machine-
learning algorithm, using a Support Vector Machine (SVM) 
supervised learning model [43]. SVM methods have been 
successfully applied in various applications, such as face 
detection [44] and speaker recognition [45] to name but two. 
SVM models try to find the separation between the different 
categories with a gap that is as wide as possible to create a 
delimited space for each category. Then, when a new value is 
presented, SVM models estimate the space in which the value 
sits, thus predicting the category it belongs to.  

Supervised learning algorithms are dependent of a labelled 
training dataset. Therefore, the initial step was to create a set 
of examples that will then be used to train the SVM 
classification model. Here, examples consisted of calculated 
timbral values of short audio files as input data, and their 
dominant perceptual quality, represented by verbal attributes, 
as the desired output category. The training samples have 
been selected from the large training dataset created for the 
comparative scale mentioned previously. In this case, the 250 
orchestral audio files that have scored the highest values for 
each verbal attribute have been selected and manually 
labelled by the authors with their corresponding attribute. For 
instance, the 250 samples with the highest values for the at-
tribute brightness have been chosen and labelled ‘brightness’. 
In total, the corpus training contained 1,250 samples labelled 
accordingly.  

The SVM algorithm has been implemented using the 
svm.SVC function, which is a SVM method for classification 
task, taken from the Scikit-Learn v0.18 library [46], with 
parameters kernel type = RBF (for Radial Basis Function), 
RBF kernel coefficient γ = 0.2, and penalty parameter C=1.0. 
Figure 3 shows a normalized confusion matrix created to 
estimate the performance of the classification model 
generated by the SVM algorithm. Here, the training samples 
consisted of 90% of the training corpus (1,125 samples), and 
10% of the training corpus (125 samples) were selected as 
testing samples. Using this training dataset, the svm.SVC 
function produced a success rate of 0.976, which means that 
the classification model predicted the correct verbal attribute 
97.6% of the time. Users have the ability to calibrate the 
classification models by listening and labelling a selection of 
audio samples, which are then processed by the SVM 
algorithm. This method, inspired by the reinforcement 

learning techniques, allows users to input their own 
perception levels into the learning process, thus improving 
the accuracy of the suggested classifications. 

 
Figure 3. Normalised confusion matrix of the SVM 

classification model created from rescaled training dataset, 
with test size = 10% (1,125 training samples, 125 testing 

samples). 

3.1. Solution Candidate Examples 

This section illustrates the definition and generation of a 
solution candidate. As mentioned previously, i-Berlioz 
utilizes timbre descriptors as output decision parameter in the 
generative engine. Other parameters can be manipulated by 
the user to define their musical ideas and guide the generative 
processes. As additional constraints, the user can specify the 
group of instruments and the types of interval allowed 
between the sets of notes of a candidate solution; for instance, 
a type of chord such as major, minor, whole tones, semi-tone 
clusters, and so on. These parameters could also be randomly 
assigned should the user wish so. 

For ease of description and discussion, the following 
examples are constrained to string instruments only: 
contrabass, violoncello, viola and violin. For the first 
example, the system was instructed to generate a solution 
with a bright timbre produced by three different string 
instruments. The input to the system looks like this: {bright, 
string, 3}. Figure 4 shows the spectrogram of a candidate 
solution generated by i-Berlioz. It produced a chord with the 
following 3 notes: {A#3, bass, note-lasting}, {D, viola, 
pizzicato-secco} and {F6, violin, note-lasting}. The first 
parameter inside brackets is the name of the note, the second 
is the name of the instrument to produce the note and the third 
is the playing technique. 

In the spectrogram of the audio file generated for this 
solution candidate we can note that this audio file contains 
considerable energy (intensity) at its high frequencies, a 
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feature of the ‘brightness’ quality. Figure 5 presents a 
spectrogram of a second example, generated from the 
following request:  {warm, string, 3}. In this case, the system 
produced the following solution candidate: {D#2, bass, 

staccato}, {B2, cello, pizzicato-secco} and {F#4, violin, 
pizzicato-secco}. The spectrogram of this solution (Figure 5) 
shows that energy is more prominent at the lower frequencies 
of the spectrum; i.e., below 2,500 Hz.

 

 
Figure 4. Spectrogram of the audio file generated for a candidate solution matching the descriptor ‘brightness’. 

 
 

 
Figure 5. Spectrogram of the audio file generated for a candidate solution matching the descriptor ‘warmth’. 

 
 
 

4. Sequencing and Transitions At the basis of the scheme for making transitions introduced 
above is a sophisticated engine for writing and executing 
temporal constraints, based on a formalism for the authoring 
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of interactive scores developed during the course of the 
OSSIA research project at LaBRI [17]. This formalism 
manifests itself mainly in the i-score software, which is both 
a visual editor and an execution engine for such interactive 
scores. 

The system is based on the following building blocks: 
temporal interval, temporal condition, instantaneous 
condition, and process. Temporal intervals are organized in 
directed acyclic graphs, with instantaneous conditions being 
the vertices of such graphs, and the direction of time being 
the direction of the graph. Temporal conditions allow to 
trigger groups of instantaneous conditions, which in turn 
stops and starts previous and following intervals. During the 
execution of an interval, processes can take place: these can 
be automations, sound files and effects, scripts, and so on. 

The elements of the OSSIA model is shown in Figure 6. 
The execution takes place as follows: the interval A runs for 
a fixed duration. When it ends, an instantaneous condition is 
evaluated: if it is false, the branch with B will not run. 
Otherwise, after some time and the playback of an audio file, 
the execution of B ends up in a flexible area centred on a 
temporal condition. If there is an interaction, B stops and D 
starts. Else, D starts when the maximum bound of B is 
reached. Like after A, a condition chooses whether G will 
execute. If G executes, an automation and another 
computation are both executed for a fixed duration. 
Meanwhile, C started executing at the same time than B. C is 
waiting for an interaction, without any time-out. When the 
interaction happens, the two conditions following C are 
evaluated; the truth value of each will imply the execution of 
E and F. Finally, when H executes, a hierarchical sub-score 
starts. 

The compositional process proposed in this paper only 
requires the use of instantaneous conditions in order to choose 
a specific sequence amongst the possible ones, and of the i-
Berlioz process. This process leverages the generation engine 
to create and listen to chords according to a specific 
transition. The following parameters can be specified by the 
composer: 

• The start and end target descriptors 
• The duration of each orchestration cluster, or 

chord 
• The number of instruments 
• The set of instruments available for 

generating an orchestration cluster  

When the process runs, at regular intervals fixed by the 
requested chord length, the generation engine receives a 
chord query. When a correct chord has been generated, its 
sound file is reported to the i-Berlioz process which plays it.  

In order to perform a cross-fade between the start and end 
descriptors, the following algorithm is applied:  

 
 
 

Figure 6. Elements of the OSSIA model. 

• On the first tick, generate ten chords and use 
their attribute value, for instance ‘brightness’ 
to find a minimal and maximal expected 
value for the rest of the generation. 

• Then, at every tick, generate ten other chords 
and find the one with the attribute that 
matches the expected progression the closest 
over all chords generated, so that the first 
generated chord has a maximal attribute, and 
the chord generated at the middle of the 
process has a minimal attribute.  

• For the second half of the process, perform 
the same method but going from the 
minimum to the maximum instead. 

4.1 An Example of Making Transitions with i-
Berlioz 

This section proposes to illustrate the processes for creating 
sequences of instrument combination transitions with i-
Berlioz with a detailed example. First, considering a single 
run of the process shown in Figure 7, which consists of 
generating a sequence of chords from ‘brightness’ to 
‘dullness’. The corresponding timbral values for each chord 
composing the sequence are displayed in Table 1. Here, the 
sequence comprised of ten chords divided in two parts. First, 
i-Berlioz generated five brass instrument chords matching the 
timbral descriptor ‘brightness’, which were then concatenated 
in descending order. Then, five chords matching the attribute 
‘dullness’ were generated and concatenated in ascending 
order. In other words, the system was required to generate a 
sequence going from ‘very bright’ to a ‘little bright’, then 
from a ‘little dull’ to ‘very dull’. 

Next, consider the scenario example presented in Figure 8. 
Here, i-Berlioz was asked to generate three sequences using 
the number of instruments defined by the curve drawn in the 
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i-score automation box displayed at the top—in this example, 
using two to four instruments.  
 

 
 

Figure 7. The i-Berlioz process embedded in an i-Score object. 
 
Table 1. Calculated timbral values for the sequence shown 

in Figure 7. 

Descriptor Timbral Values  
Brightness 0.8129 0.7805 0.6685 0.5872 0.497 
Dullness 0.6247 0.7170 0.8001 0.8159 0.875 
 

The first sequence consisted of generating instrument 
combinations from dullness to breathiness with brass 
instruments. The second sequence had an instantaneous 
condition (shown in the OSSIA model in Figure 6). Here, 
the selection of the i-Berlioz box to generate the sequence 
2 depended on a condition. In this example, we used a 
MIDI to specify the MIDI values of a fader. If the fader 
was up, the box named Sequence_2a was selected. 
Otherwise, if the fader was down, Sequence_2b was 
selected. Here, the fulfilment of the condition was 
manually defined by moving a fader on a MIDI controller. 
However, conditions can also be the result of different 
parameters, such as temporal or number of instruments to 
combine for example. Then, for the third sequence, the i-
Berlioz box Sequence_3 had a temporal condition which 
meant to start the generation of this sequence after 15 
seconds. This last sequence was composed of brass 
instrument combinations from brightness to dullness. 

5 Concluding Remarks 

We are interested in developing technology for computer-
aided orchestration, or CAO. Our research is aimed at 
furthering our understanding of orchestral timbre and 
building systems for CAO informed by such 
understanding. This paper introduced i-Berlioz, a proof-of-
concept interactive CAO system that generates 
orchestrations from verbal timbre descriptors.  

Currently, i-Berlioz is capable of processing only five 
timbre descriptors: breathiness, brightness, dullness, 
roughness and warmth. Obviously, this is only a starting 
point. Our goal is to provide flexibility for user-defined 
vocabularies. However, this is a challenging task because 
timbre is a difficult concept to formalize, even more so 
orchestral timbre, as there has been relatively less research 
into orchestral timbre emerging from the combination of 
various musical instruments playing simultaneously. 

Still more work need to be developed with respect to the 
Exploratory Engine (Figure 2). Here we introduced how we 
are exploring the potential of the OSSIA time-based 
formalism to aid the design of sequences and transitions of 
timbral events in time, which we believe would ultimately 
aid the composition of musical form based on timbre. 
Interactive scores, as presented in [47], allows a composer 
to write musical scores in a hierarchical fashion and 
introduce interactivity by setting interaction points. This 
would enable different executions of the same score to be 
performed, while maintaining a global consistency by the 
use of constraints on either the values of the controlled 
parameters, or the time when they must occur.  
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Figure 8. A scenario example operation of i-Berlioz.
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